Stem Cells: Aspiring to Naivety

Download .pdf, .docx, .epub, .txt
Did you like this example?

Stem cells are undifferentiated cells of multicellular organisms. Specifically embryonic stem cell are pluripotent, meaning they can create several different types of cells. With this new knowledge, biomedical research has ascended to new levels.

Don’t waste time! Our writers will create an original "Stem Cells: Aspiring to Naivety" essay for you whith a 15% discount.

Create order

To get embryonic stem cells biologists first produce via vitro fertilization, which is where an egg and sperm are combined outside of the body, isolated at blastocyst stage, and are finally grown in culture. Embryonic stem cells are not regarded as native pluripotent stem cells, which are identical to the blastocysts they come from. Embryonic stem cells are instead regarded as primed pluripotent stem cells, because they taking a more mature cells ready to adapt. The ability to generate truly native cells a culture accommodates the happenings, to study early developmental processes. Thus presents the opportunity to optimize cell-differentiation protocols for disease molding and therapy.

Several groups of researchers describe culture conditions, which can maintain human pluripotent stem cells in a blastocyst-like native state, by changing the primed state or by direct isolation from embryos. The similarities between native cells and blastocyst cells is still very vague. The researchers used different medleys of growth factors and small molecules to generate human cells with native mouse pluripotency features, each differing comparison to human blastocyst in terms of gene expression. Researchers hit a snag because embryonic development between humans and mice is starkly different pertaining to timing, morphology, and even at the molecular level. Because of this drawing conclusions with mouse pluripotency can be deceptive when comparing to the condition of human cells. To conquer this impediment. Theunissen, took to human embryos.

On the basis of RNA expression, researchers began to brainstorm a new way to characterize among different embryonic stages. Approximately half of human DNA comes to pass rom mobile sequences termed transposable elements. Transposable elements become entrenched in the genome throughout evolution. Theunissen along with the help of his associates utilized the distinctive ample sequences that created RNA in a cell-type specific manner. Researchers established that genes shown in native cells lap over genes shown in the blastocyst, all the same the cells transposable-element profile coincide with one another being blastocyst, and prior developmental stage. With these findings, credible evidence can show the distinctness among the pluripotent cases of mice and humans.

With a new focus on the regulation of gene expression, Theunissen turned to chemical modification to the DNA called methylation. Early embryos, saw a genome-wide DNA methylation levels decreasing dramatically compared to those in the egg and sperm, extending smidgen about the blastocyst. Though methylation is manage in domains to copy the gene inherited from one parent is shown, the copy taken from the other parent is subdued. This occurrence recognized as an imprinted sequence.

Do you want to see the Full Version?

View full version

Having doubts about how to write your paper correctly?

Our editors will help you fix any mistakes and get an A+!

Get started
Leave your email and we will send a sample to you.
Thank you!

We will send an essay sample to you in 2 Hours. If you need help faster you can always use our custom writing service.

Get help with my paper
Sorry, but copying text is forbidden on this website. You can leave an email and we will send it to you.