Glass-ceramics Essay

Download .pdf, .docx, .epub, .txt
Did you like this example?

CHAPTER 1

1. Introduction

1.1 Glass-ceramics

Glass-ceramics are fine-grained polycrystalline materials formed when glasses of suitable compositions are heat treated and thus undergo controlled crystallisation to the lower energy, crystalline state. It must be emphasised here that only specific glass compositions are suitable precursors for glass-ceramics due to the fact that some glasses are too stable and difficult to crystallise whereas others result in undesirable microstructures by crystallising too readily in an uncontrollable manner.

Don’t waste time! Our writers will create an original "Glass-ceramics Essay" essay for you whith a 15% discount.

Create order

In addition, it must also be accentuated that in order for a suitable product to be attained, the heat-treatment is critical for the process and a range of generic heat treatment procedures are used which are meticulously developed and modified for a specific glass composition.

A glass-ceramic is formed by the heat treatment of glass which results in crystallisation. Crystallisation of glasses is attributed to thermodynamic drives for reducing the Gibbs’ free energy, and the Amorphous Phase Separation (APS) which favours the crystallisation process by forming a nucleated phase easier than it would in the original glass. When a glass is melted, the liquid formed from the melting might spontaneously separate into two very viscous liquids or phases. By cooling the melt to a temperature below the glass transformation region it will result in the glass being phase separated and this is called liquid-liquid immiscibility. This occurs when both the phases are liquid. Hence a glass can simply be considered as a liquid which undergoes a demixing process when it cools. The immiscibility is either stable or metastable depending on whether the phase seperation occurs above or below the liquidus temperature respectively. The metastable immiscibility is much more inmportant and has two processes which then cause phase seperation and hence crystallisation; nucleation and crystal growth and spinodal decomposition.

The first APS process has two distinguished stages; Nucleation (whereby the crystals will grow to a detectable size on the nucleus) and Crystal growth. Nucleation can either be homogeneous; where the crystals form spontaneously within the melt or heterogeneous; crystals form at a pre-existing surface such as that due to an impurity, crucible wall etc. Many a time the parent glass composition is specifically chosen to contain species which enhance internal nucleation which in the majority of cases is required. Such species also called nucleating agents can include metallic agents such as Ag, Pt and Pd or non-metallic agents such as TiO­2, P2O5 and fluorides. The second process is spinodal decomposition which involves a gradual change in composition of the two phases until they reach the immiscibility boundary. As both the processes for APS are different, the glass formed will clearly result in having different morphology to each other.

A glass-ceramic is usually not fully crystalline; with the microstructure being 50-95 volume % crystalline with the remainder being residual glass.

Do you want to see the Full Version?

View full version

Having doubts about how to write your paper correctly?

Our editors will help you fix any mistakes and get an A+!

Get started
Leave your email and we will send a sample to you.
Thank you!

We will send an essay sample to you in 2 Hours. If you need help faster you can always use our custom writing service.

Get help with my paper
Sorry, but copying text is forbidden on this website. You can leave an email and we will send it to you.