Electrochemical Characterization of Bovine Serum Albumin Adsorption

Download .pdf, .docx, .epub, .txt
Did you like this example?

Blood-material interactions are critical for the performance and biocompatibility of biomedical devices implanted in thousands of patients every day. When an implant is introduced into the body, protein adsorption and activation of complement proteins occur on the foreign surface [1-3] and a series of interactions happen [4], firstly, water molecules reach the surface of the implant and build a water shell around it on a time scale that is of the order of nanoseconds. The interaction of the water molecules with the surface of the implant is dependent on the surface properties of the kind of material the implant is made of.

Don’t waste time! Our writers will create an original "Electrochemical Characterization of Bovine Serum Albumin Adsorption" essay for you whith a 15% discount.

Create order

This property also determines which proteins and other molecules will adhere following the formation of the hydration shell. Secondly, from a few seconds to hours after implantation, the implant becomes covered in an adsorbed layer of proteins primarily present in the extracellular matrix. Thirdly, cells eventually reach the ‘surface’ interacting through the protein covering; thus cell-surface interactions can be described as the interaction between cells and surface-bound proteins. This stage occurs from as early as minutes or up to days after implantation [4]. As the time after material implantation increases from a few hours to several days, adhesion and migration followed by differentiation of cells occur. This third stage is influenced by biological molecules (extracellular matrix proteins, cell membrane proteins and cytoskeleton proteins); the biophysical environment and the evolving material physicochemical characteristics at the surface (chemistry, nano and micro-topographies); and the released soluble products from the material and its micro-structure (porosity) [5, 6]. The fourth and final stage in the useful life of the implant, which can last from a few days (biodegradable suture) up to several decades (total hip replacement), is the continuing development of the early implant stages. Adverse responses (clots or fibrous capsule formation, for example) and implant failure can occur “ processes that can result from material degradation or mineralization [4]. Thus, the initial protein adsorption onto a biomaterial surface plays a key role in how the body responds to an implanted biomaterial.

Do you want to see the Full Version?

View full version

Having doubts about how to write your paper correctly?

Our editors will help you fix any mistakes and get an A+!

Get started
Leave your email and we will send a sample to you.
Thank you!

We will send an essay sample to you in 2 Hours. If you need help faster you can always use our custom writing service.

Get help with my paper
Sorry, but copying text is forbidden on this website. You can leave an email and we will send it to you.