Dynamic Routing For Data Integrity

Download .pdf, .docx, .epub, .txt
Did you like this example?

Dynamic Routing for Data Integrity and Delay Differentiated Services in Wireless Sensor Networks

ABSTRACT:

Applications running on the same Wireless Sensor Network (WSN) platform usually have different Quality of Service (QoS) requirements. Two basic requirements are low delay and high data integrity. These two requirements cannot be satisfied simultaneously. Existing system problems are being resolved using this project. In the previous projects high data integrity with low delay are not done at the same time, using this one we have overcome those issues.

Keywords: QoS, IDDR, WSN

Don’t waste time! Our writers will create an original "Dynamic Routing For Data Integrity" essay for you whith a 15% discount.

Create order

INRODUCTION:

WSNs have two basic QoS requirements: low delay and high data integrity, leading to what are called delay sensitive applications and high-integrity applications, respectively. Generally, in a network with light load, both requirements can be readily satisfied. However, a heavily loaded network will suffer congestion, which increases the end to-end delay. This work aims to simultaneously improve the fidelity for high-integrity applications and decrease the end-to-end delay for delay-sensitive ones, even when the network is congested. We borrow the concept of potential field from the discipline of physics and design a novel potential based routing algorithm, which is called integrity and delay differentiated routing (IDDR). IDDR is able to provide the following two functions:

  • Improve fidelity for high-integrity applications.
  • Decrease end-to-end delay for delay-sensitive applications.

LITERATUR SURVEY

  1. Most QoS provisioning protocols proposed for traditional ad hoc networks have large overhead caused by end-to-end path discovery and resource reservation. Thus, they are not suitable for resource-constrained WSNs. Some mechanisms have been designed to provide QoS services specifically for WSNs. Adaptive Forwarding Scheme (AFS) employs the packet priority to determine the forwarding behavior to control the reliability .LIEMRO utilizes a dynamic path maintenance mechanism to monitor the quality of the active paths during network operation and regulates the injected traffic rate of the paths according to the latest perceived paths quality.
  2. It does not consider the effects of buffer capacity and service rate of the active nodes to estimate and adjust the traffic rate of the active paths. This will cause congestion and thus lead to many high integrity packets loss and large end-to-end delay for delay sensitive packets. Delay-sensitive packets occupy the limited bandwidth and buffers, worsening drops of high-integrity ones. High-integrity packets block the shortest paths, compelling the delay-sensitive packets to travel more hops before reaching the sink, which increases the delay. High-integrity packets occupy the buffers, which also increases the queuing delay of delay-sensitive packets.
  3. This work aims to simultaneously improve the fidelity for high-integrity applications and decrease the end-to-end delay for delay-sensitive ones, even when the network is congested. We borrow the concept of potential field from the discipline of physics and design a novel potential based routing algorithm,

Do you want to see the Full Version?

View full version

Having doubts about how to write your paper correctly?

Our editors will help you fix any mistakes and get an A+!

Get started
Leave your email and we will send a sample to you.
Thank you!

We will send an essay sample to you in 2 Hours. If you need help faster you can always use our custom writing service.

Get help with my paper
Sorry, but copying text is forbidden on this website. You can leave an email and we will send it to you.