Characterization Of Amyloid Fibrils and Protective Effects Of Silibinin

Download .pdf, .docx, .epub, .txt
Did you like this example?

Amyloid fibrils are abnormal, fibrous protein deposits that grow on the outer membrane of the cells. They are insoluble and do not function to provide structural support or motility in humans. Amyloids are known to show major impact on diseases like Alzheimer’s and type II diabetes which progress over a period of time and are associated with high mortality (1).

Don’t waste time! Our writers will create an original "Characterization Of Amyloid Fibrils and Protective Effects Of Silibinin" essay for you whith a 15% discount.

Create order

There are no effective treatments known for amyloid-related diseases, therefore, searching for compounds that can effectively inhibit the formation of amyloid fibrils and/or disaggregate the preformed amyloid fibrils will act as a more promising treatment (2, 3). Silibinin are extracted from the medicinal plant Silybum marianum, also known as milk thistle, and have traditionally been used for the treatment of liver diseases (4). In a research, it was shown that silibinin could interrupt the complex structure of the amyloid protein, and transform the fibrils into shapeless aggregates hence decreasing its effects on the amyloid-related diseases (5). However, there are various forms of amyloid-fibril proteins. This paper focuses on amyloid-fibril formation and their characterization in various different amyloid-fibril proteins.

Further, this paper will explore cytotoxicity induced by amyloid fibrils affecting patients who take insulin. The term ‘amyloid’ was coined initially by Schleiden and then by Virchow in the mid-19th century to describe the iodine stained deposits seen in the liver at an autopsy. Initially, the deposits were thought to be high in carbohydrate until their high nitrogen content was later established. However, the inaccurate name persisted despite the discovery of its highly proteinaceous composition (7). Through microscopic studies and transmission electron micrographs, it was confirmed that amyloid carried a fibrillar or thread-like structure. Further advances in the biomedical and biophysical arena helped to isolate amyloid fibrils from the tissues and use X-ray fiber diffraction to exhibit the cross-?? structure (8, 9). Amyloid fibrils are highly stable and insoluble which makes them very useful in a large number of naturally occurring bionanotechnology. However, fibrils can also be destructive as they have the ability to accumulate in the tissue and form basis of diseases or aggravate a given disease (1). In order to understand more about amyloid fibrils, it was necessary to isolate them without completely dissociating them. The highly stable structure of amyloid fibrils made it hard to isolate them from the tissues without affecting its structural integrity of the fibrils.

Therefore it became necessary to devise an effective method of isolation. Cohen and Calkins in their paper, The Isolation of amyloid fibrils and a study of the effect of collagenase and hyaluronidase, provided an effective method to isolate the amyloid fibrils without destroying their structural integrity. Hepatic tissues with excessive amyloid fibrils were extracted from post-mortem patients and was extracted using subsequent centrifugation and washing. The extracted fibrils and normal liver tissue as a control were then treated with the enzymes collagenase and hyaluronidase and then centrifuged.

Do you want to see the Full Version?

View full version

Having doubts about how to write your paper correctly?

Our editors will help you fix any mistakes and get an A+!

Get started
Leave your email and we will send a sample to you.
Thank you!

We will send an essay sample to you in 2 Hours. If you need help faster you can always use our custom writing service.

Get help with my paper
Sorry, but copying text is forbidden on this website. You can leave an email and we will send it to you.