Brushed DC Motor Fundamentals

Download .pdf, .docx, .epub, .txt
Did you like this example?

AN905 Brushed DC Motor Fundamentals Author: Reston Condit Microchip Technology Inc. Stator The stator generates a stationary magnetic field that surrounds the rotor. This field is generated by either permanent magnets or electromagnetic windings. The different types of BDC motors are distinguished by the construction of the stator or the way the electromagnetic windings are connected to the power source. (See Types of Stepping Motors for the different BDC motor types). INTRODUCTION Brushed DC motors are widely used in applications ranging from toys to push-button adjustable car seats. Brushed DC (BDC) motors are inexpensive, easy to drive, and are readily available in all sizes and shapes. This application note will discuss how a BDC motor works, how to drive a BDC motor, and how a drive circuit can be interfaced to a PIC® microcontroller. Rotor The rotor, also called the armature, is made up of one or more windings. When these windings are energized they produce a magnetic field. The magnetic poles of this rotor field will be attracted to the opposite poles generated by the stator, causing the rotor to turn. As the motor turns, the windings are constantly being energized in a different sequence so that the magnetic poles generated by the rotor do not overrun the poles generated in the stator. This switching of the field in the rotor windings is called commutation. PRINCIPLES OF OPERATION The construction of a simple BDC motor is shown in Figure 1. All BDC motors are made of the same basic components: a stator, rotor, brushes and a commutator. The following paragraphs will explain each component in greater detail. FIGURE 1: SIMPLE TWO-POLE BRUSHED DC MOTOR N NORTH Axle SOUTH Brushes Commutator Field Armature Magnet or Coil ? 2004 Microchip Technology Inc. DS00905A-page 1 AN905 Brushes and Commutator Unlike other electric motor types (i. e. , brushless DC, AC induction), BDC motors do not require a controller to switch current in the motor windings. Instead, the commutation of the windings of a BDC motor is done mechanically. A segmented copper sleeve, called a commutator, resides on the axle of a BDC motor. As the motor turns, carbon brushes slide over the commutator, coming in contact with different segments of the commutator. The segments are attached to different rotor windings, therefore, a dynamic magnetic field is generated inside the motor when a voltage is applied across the brushes of the motor. It is important to note that the brushes and commutator are the parts of a BDC motor that are most prone to wear because they are sliding past each other. Shunt-Wound Shunt-wound Brushed DC (SHWDC) motors have the field coil in parallel (shunt) with the armature. The current in the field coil and the armature are independent of one another. As a result, these motors have excellent speed control. SHWDC motors are typically used applications that require five or more horsepower. Loss of magnetism is not an issue in SHWDC motors so they are generally more robust than PMDC motors. FIGURE 3: SHUNT-WOUND DC MOTORS Brush TYPES OF STEPPING MOTORS As mentioned earlier,

Do you want to see the Full Version?

View full version

Having doubts about how to write your paper correctly?

Our editors will help you fix any mistakes and get an A+!

Get started
Leave your email and we will send a sample to you.
Thank you!

We will send an essay sample to you in 24 Hours. If you need help faster you can always use our custom writing service.

Get help with my paper
Sorry, but copying text is forbidden on this website. You can leave an email and we will send it to you.